ÌâÄ¿ÄÚÈÝ
9£®£¨1£©ÔÚͼÖУ¬ÏȽ«¡÷AOBÏòÉÏÆ½ÒÆ6¸öµ¥Î»£¬ÔÙÏòÓÒÆ½ÒÆ3¸öµ¥Î»£¬»³öÆ½ÒÆºóµÄ¡÷A1O1B1£»£¨ÆäÖеãA£¬O£¬BµÄ¶ÔÓ¦µãΪA1£¬O1£¬B1£©
£¨2£©ÔÚͼÖУ¬½«¡÷A1O1B1ÈÆµãO1˳ʱÕëÐýת90¡ã£¬»³öÐýתºóµÄRt¡÷A2O1B2£»£¨ÆäÖеãA1£¬B1µÄ¶ÔÓ¦µãΪA2£¬B2£©
£¨3£©Ö±½Óд³öµãA2£¬B2µÄ×ø±ê£®
·ÖÎö £¨1£©ÀûÓÃÆ½ÒƵÄÐÔÖÊд³öA¡¢O¡¢BµÄ¶ÔÓ¦µãA1¡¢O1¡¢B1µÄ×ø±ê£¬È»ºóÃèµã¼´¿ÉµÃµ½¡÷A1O1B1£»
£¨2£©ÀûÓÃÍø¸ñÌØµãºÍÐýתµÄÐÔÖÊ£¬»³öµãA1£¬B1µÄ¶ÔÓ¦µãA2£¬B2¼´¿É£»
£¨3£©¸ù¾ÝËù»Í¼ÐΣ¬Ð´³öµãA2£¬B2µÄ×ø±ê£®
½â´ð ½â£º£¨1£©Èçͼ£¬¡÷A1O1B1ΪËù×÷
£¨2£©Èçͼ£¬Rt¡÷A2O1B2ΪËù×÷£»
£¨3£©µãA2£¬B2µÄ×ø±ê·Ö±ðΪ£¨7£¬6£©£¬£¨3£¬9£©£®![]()
µãÆÀ ±¾Ì⿼²éÁË×÷ͼ-Ðýת±ä»»£º¸ù¾ÝÐýתµÄÐÔÖÊ¿ÉÖª£¬¶ÔÓ¦½Ç¶¼ÏàµÈ¶¼µÈÓÚÐýת½Ç£¬¶ÔÓ¦Ïß¶ÎÒ²ÏàµÈ£¬ÓÉ´Ë¿ÉÒÔͨ¹ý×÷ÏàµÈµÄ½Ç£¬ÔڽǵıßÉϽØÈ¡ÏàµÈµÄÏ߶εķ½·¨£¬ÕÒµ½¶ÔÓ¦µã£¬Ë³´ÎÁ¬½ÓµÃ³öÐýתºóµÄͼÐΣ®Ò²¿¼²éÁËÖá¶Ô³Æ±ä»»£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®
Èçͼ£¬Ò»°Ñ³¤·½ÐÎÖ±³ßÑØÖ±Ïß¶Ï¿ª²¢´íλºó£¬ÍõÀöͬѧ·¢ÏÖµãE¡¢D¡¢B¡¢FÔÚͬһÌõÖ±ÏßÉÏ£¬Èô¡ÏADE=115¡ã£¬Ôò¡ÏDBCµÄ¶ÈÊýΪ£¨¡¡¡¡£©
| A£® | 55¡ã | B£® | 65¡ã | C£® | 75¡ã | D£® | 125¡ã |
17£®ÏÂÁк¯ÊýÖУ¬ÊÇ·´±ÈÀýº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | y=$\frac{x}{2}$ | B£® | y=-$\frac{\sqrt{3}}{3x}$ | C£® | y=$\frac{2}{{x}^{2}}$ | D£® | y=1-$\frac{1}{x}$ |
14£®
Èçͼ£¬µãDÔÚ¡÷ABCµÄ±ßACÉÏ£¬ÒªÅжϡ÷ADCÓë¡÷ABCÏàËÆ£¬Ìí¼ÓÒ»¸öÌõ¼þ£¬²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¡ÏABD=¡ÏC | B£® | ¡ÏADB=¡ÏABC | C£® | CB2=CD•CA | D£® | AB2=AD•AC |
18£®ÒªËµÃ÷ÃüÌâ¡°Èôa£¾b£¬Ôò|a|£¾|b|¡±ÊǼÙÃüÌ⣬ÄܾٵÄÒ»¸ö·´ÀýÊÇ£¨¡¡¡¡£©
| A£® | a=3£¬b=2 | B£® | a=4£¬b=-1 | C£® | a=1£¬b=0 | D£® | a=1£¬b=-2 |
19£®ÒÑÖªx=1£¬y=2ÊÇ·½³Ìax+y=5µÄÒ»×é½â£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | -3 | B£® | -2 | C£® | 3 | D£® | 7 |