题目内容

精英家教网如图,C为线段AB上一点,以BC为直径作⊙O,再以AO为直径作⊙M交⊙O于D、B作AB的垂线交AD的延长线于F,连接CD.若AC=2,且AC与AD的长是关于x的方程x2-2(1+
5
)
x+k=0的两个根.
①求证:AD是⊙O的切线;
②求线段DF的长.
分析:(1)连接OD,证OD⊥AD即可;已知AO是⊙M的直径,那么根据圆周角定理即可判定OD⊥AD,由此得证.
(2)由根与系数的关系可求得AD的长,进而可根据切割线定理求得AB的值;设出DF、BF的长,然后在Rt△ABF中,由勾股定理求出DF的长.
解答:精英家教网(1)证明:连接OD;
∵OA是⊙M的直径,
∴∠ADO=90°;
即OD⊥AD,而OD是⊙O的半径,
故AD是⊙O的切线.

(2)解:由题意知:AC+AD=2(1+
5
)

已知AC=2,则AD=2
5

由切割线定理知:AD2=AC•AB,即AB=AD2÷AC=10;
由于FD、FB都是⊙O的切线,故FD=FB;
设FD=FB=x,则AF=2
5
+x;
由勾股定理得:AB2+BF2=AF2,即:
102+x2=(2
5
+x)2,解得x=4
5

即线段DF的长为4
5
点评:本题主要考查了切线的判定、切割线定理、切线长定理、勾股定理以及韦达定理等知识的综合应用,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网