题目内容
分析:利用△ACM、△CBN都是等边三角形,则也是相似三角形,相似比是3:2,再证得△MCD∽△BND,则面积比可求.
解答:解:∵△ACM、△CBN都是等边三角形,
∴△ACM∽△CBN,
∴CM:BN=AC:BC=3:2;
∵△ACM、△CBN都是等边三角形,
∴∠MCA=∠NDB=∠BND=60°,
∴∠MCN=60°=∠BND,
∴∠CMD=∠NBD(三角形内角和定理)
∴△MCD∽△BND
∴△MCD与△BND的面积比为(
)2=(
)2=
.
∴△ACM∽△CBN,
∴CM:BN=AC:BC=3:2;
∵△ACM、△CBN都是等边三角形,
∴∠MCA=∠NDB=∠BND=60°,
∴∠MCN=60°=∠BND,
∴∠CMD=∠NBD(三角形内角和定理)
∴△MCD∽△BND
∴△MCD与△BND的面积比为(
| BN |
| CM |
| 3 |
| 2 |
| 9 |
| 4 |
点评:本题考查对相似三角形的判定及性质的理解.相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目