题目内容
观察下列等式:
=1-
,
=
-
,
=
-
将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
…
(1)猜想并写出:
= .
(2)计算:
+
+
+…+
(3)探究并计算:
①
+
+
+…+
②
-
+
-
+…-
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
将以上三个等式两边分别相加得:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
(1)猜想并写出:
| 1 |
| n×(n+1) |
(2)计算:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2013×2014 |
(3)探究并计算:
①
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2012×2014 |
②
| 5 |
| 6 |
| 7 |
| 12 |
| 9 |
| 20 |
| 11 |
| 30 |
| 99 |
| 2450 |
考点:有理数的混合运算
专题:规律型
分析:(1)先根据题中所给出的列子进行猜想,写出猜想结果即可;
(2)根据(1)中的猜想计算出结果;
(3)①根据乘法分配律提取
,再计算即可求解;
②先拆项,再抵消即可求解.
(2)根据(1)中的猜想计算出结果;
(3)①根据乘法分配律提取
| 1 |
| 4 |
②先拆项,再抵消即可求解.
解答:解:(1)
=
-
;
(2)
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
;
(3)①
+
+
+…+
=
×(
+
+
+…+
)
=
×(1-
+
-
+
-
+…+
-
)
=
×(1-
)
=
×
=
;
②
-
+
-
+…-
=
+
-
-
+
+
-
-
+…-
-
=
-
=
.
故答案为:
-
.
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2013×2014 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=1-
| 1 |
| 2014 |
=
| 2013 |
| 2014 |
(3)①
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2012×2014 |
=
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 1006×1007 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1006 |
| 1 |
| 1007 |
=
| 1 |
| 4 |
| 1 |
| 1007 |
=
| 1 |
| 4 |
| 1006 |
| 1007 |
=
| 503 |
| 2014 |
②
| 5 |
| 6 |
| 7 |
| 12 |
| 9 |
| 20 |
| 11 |
| 30 |
| 99 |
| 2450 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 49 |
| 1 |
| 50 |
=
| 1 |
| 2 |
| 1 |
| 50 |
=
| 12 |
| 25 |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
点评:本题考查的是有理数的混合运算,根据题意找出规律是解答此题的关键.
练习册系列答案
相关题目
若规定f(a)=-|a|,则f(-3)=( )
| A、3 | B、9 | C、-9 | D、-3 |