题目内容

12.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则$\frac{BE}{EC}$的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{25}$

分析 根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到答案.

解答 解:∵DE∥AC,
∴△DOE∽△COA,又S△DOE:S△COA=1:25,
∴$\frac{DE}{AC}$=$\frac{1}{5}$,
∵DE∥AC,
∴$\frac{BE}{BC}$=$\frac{DE}{AC}$=$\frac{1}{5}$,
∴$\frac{BE}{EC}$=$\frac{1}{4}$,

点评 本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网