题目内容

16.已知正方形ABCD的对角线AC,BD相交于点O.
(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;
(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE于点F,交OC于点G.若OE=OG,
①求证:∠ODG=∠OCE;
②当AB=1时,求HC的长.

分析 (1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;
(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;
②设CH=x,由△CHE∽△DCH,可得$\frac{EH}{HC}$=$\frac{HC}{CD}$,即HC2=EH•CD,由此构建方程即可解决问题;

解答 (1)证明:如图1中,∵四边形ABCD是正方形,
∴AC⊥BD,OD=OC,
∴∠DOG=∠COE=90°,
∴∠OEC+∠OCE=90°,
∵DF⊥CE,
∴∠OEC+∠ODG=90°,
∴∠ODG=∠OCE,
∴△DOG≌△COE(ASA),
∴OE=OG.

(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,
∴△ODG≌△OCE,
∴∠ODG=∠OCE.
②解:设CH=x,
∵四边形ABCD是正方形,AB=1,
∴BH=1-x,∠DBC=∠BDC=∠ACB=45°,
∵EH⊥BC,
∴∠BEH=∠EBH=45°,
∴EH=BH=1-x,
∵∠ODG=∠OCE,
∴∠BDC-∠ODG=∠ACB-∠OCE,
∴∠HDC=∠ECH,
∵EH⊥BC,
∴∠EHC=∠HCD=90°,
∴△CHE∽△DCH,
∴$\frac{EH}{HC}$=$\frac{HC}{CD}$,
∴HC2=EH•CD,
∴x2=(1-x)•1,
解得x=$\frac{\sqrt{5}-1}{2}$或$\frac{-\sqrt{5}-1}{2}$(舍弃),
∴HC=$\frac{\sqrt{5}-1}{2}$.

点评 本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网