题目内容

20.解方程组:$\left\{\begin{array}{l}{3x^2-y^2=8}\\{x^2+xy+y^2=4}\end{array}\right.$.

分析 根据加减消元法,可得x2-2xy-3y2=0,根据因式分解,可得x、y的关系.

解答 解:$\left\{\begin{array}{l}{3{x}^{2}-{y}^{2}=8①}\\{{x}^{2}+xy+{y}^{2}=4②}\end{array}\right.$
①-②×2,得
x2-2xy-3y2=0.
因式分解,得
(x+y)(x-3y)=0.
解得x=-y,或x=3y.
当x=-y时,x=-y=±2,$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,
当x=3y时,y=$±\frac{2\sqrt{13}}{13}$,$\left\{\begin{array}{l}{x=\frac{6\sqrt{13}}{13}}\\{y=\frac{2\sqrt{13}}{13}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{6\sqrt{13}}{13}}\\{y=-\frac{2\sqrt{13}}{13}}\end{array}\right.$,
原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{6\sqrt{13}}{13}}\\{y=\frac{2\sqrt{13}}{13}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{6\sqrt{13}}{13}}\\{y=-\frac{2\sqrt{13}}{13}}\end{array}\right.$.

点评 本题考查了高次方程,加减消元是解题常用方法,因式分解是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网