题目内容

如图,等边△ABC的边长为6
3
cm,AD是高,若以点D为圆心,r为半径作圆,试分别确定⊙D与AB有怎样的位置关系?
(1)r=3cm;
(2)r=4.5cm;
(3)r=6cm.
考点:直线与圆的位置关系
专题:
分析:首先过点D作DE⊥AB于点E,进而求出DE的长,进而利用直线与圆的位置关系得出答案.
解答:解:过点D作DE⊥AB于点E,
∵等边△ABC的边长为6
3
cm,AD是高,
∴AD=ABsin60°=9cm,∠BAD=30°,
∴DE=4.5cm,
故当(1)r=3cm时,⊙D与AB相离,
(2)r=4.5cm时,⊙D与AB相切;
(3)r=6cm时,⊙D与AB相交.
点评:此题主要考查了直线与圆的位置关系判断,正确求出DE的长是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网