题目内容

已知:关于x的两个方程x2+(m+1)x+m-5=0…①与mx2+(n-1)x+m-4=0…②方程①有两个不相等的负实数根,方程②有两个实数根.
(1)求证方程②的两根符号相同;
(2)设方程②的两根分别为α、β,若α:β=1:3,且n为整数,求m的最小整数值.
(1)∵x2+(m+1)x+m-5=0,
∴△>0,即△=(m+2)2-4(m-5)=m2+2m+1-4m+20>0,
m2-2m+21>0①
-(m+1)<0②
m-5>0③

由②得m>-1由③得m>5,
∴m>5,
m-4
m
>0,
∴方程②有两个同号实数根;
(2)∵α、β分别为方程mx2+(n-1)x+m-4=0的两个根,且α:β=1:3,
∴α+β=4α=
1-n
m
,α=
1-n
4m

∴α•β=
3(1-n)2
16m2
=
m-4
m

3(1-n)2=16m2-64m
(n-1)2-4m2+16m≥0

(n-1)2=
16m2-64m
3
,4m2-16m≥0,
∴m≥4,
∵△=(n-1)2-4m(m-4)≥0,3α2=
m-4
m

m>5
m-4≥0
m>0

∴m的最小整数值为6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网