题目内容
如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED的位置,恰好使得DC∥AB,则∠CAB的大小为______________.
计算:
(1)m2-n(mn2)2;
(2)(x2-2x)(2x+3)÷(2x);
(3)(2x+y)(2x-y)+(x+y)2-2(2x2+xy);
(4)(ab-b2)÷.
知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.
情景二:A、B 是河流l两旁 的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
某几何体的三视图如图,则该几何体是( )
A. 圆柱 B. 圆锥 C. 球 D. 长方体
据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m).
(1)求B,C的距离.
(2)通过计算,判断此轿车是否超速.
若反比例函数y=与一次函数y=x-3的图象没有交点,则k的值可以是
A. 1 B. -1 C. -2 D. -3
在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是
A. B. C. D.
(2015永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是( )
A. [x]=x(x为整数) B. 0≤x﹣[x]<1 C. [x+y]≤[x]+[y] D. [n+x]=n+[x](n为整数)
已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:
(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)