题目内容

10.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{9}$D.$\frac{1}{16}$

分析 证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到$\frac{DE}{AC}=\frac{BE}{BC}$=$\frac{1}{4}$,借助相似三角形的性质即可解决问题.

解答 解:∵S△BDE:S△CDE=1:3,
∴BE:EC=1:3;
∴BE:BC=1:4;
∵DE∥AC,
∴△DOE∽△AOC,
∴$\frac{DE}{AC}=\frac{BE}{BC}$=$\frac{1}{4}$,
∴S△DOE:S△AOC=${(\frac{DE}{AC})}^{2}$=$\frac{1}{16}$,
故选D.

点评 本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网