题目内容

11.阅读材料:已知分式$\frac{3n+8}{n+1}$,化简后结果是整数,符合一切整数的n有哪些?
解:∵$\frac{3n+8}{n+1}$=$\frac{3n+3+5}{n+1}$=3+$\frac{5}{n+1}$.
∴只要求出$\frac{5}{n+1}$是整数,则n+1是5的约数,即n+1=5,n+1=1,n+1=-5,n+1=1.
∴n1=4,n2=0,n3=-6,n4=2.
(1)已知分式$\frac{2n+9}{n+1}$,化简后结果是整数,符合要求的整数n有哪些?
(2)已知分式$\frac{3{n}^{2}+7n+7}{n+2}$,化简后结果是整数,符合要求的整数n有哪些?

分析 (1)将2n+9写成2n+2+7即2(n+1)+7,类比题意可得整数n的值;
(2)将分子分解因式3n2+7n+7=3n2+7n+2+5=(3n+1)(n+2)+5,类比题意可得整数n的值.

解答 解:(1)∵$\frac{2n+9}{n+1}=\frac{2n+2+7}{n+1}=2+\frac{7}{n+1}$,
∴只要求出$\frac{7}{n+1}$是整数,则n+1是7的约数,即n+1=7,n+1=1,n+1=-7,n+1=-1.
∴n1=6,n2=0,n3=-8,n4=-2.
(2)∵$\frac{3{n}^{2}+7n+7}{n+2}$=$\frac{3{n}^{2}+7n+2+5}{n+2}=\frac{(3n+1)(n+2)+5}{n+2}$=$3n+1+\frac{5}{n+2}$,
∴只要求出$\frac{5}{n+2}$是整数,则n+2=5,n+2=1,n+2=-5,n+2=-1.
∴n1=3,n2=-1,n3=-7,n4=-3.

点评 本题主要考查分式的变形规律和分式性质的应用能力,将分子变形是解题关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网