题目内容

已知点D,E分别是△ABC两边AB,AC的中点,如果AB=3,BC=5,CA=4,那么△ADE的周长是
 
分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,根据三角形中位线定理可得到△ABC的周长是△ADE周长的2倍,进而根据已知可求解.
解答:解:∵点D,E分别是△ABC两边AB,AC的中点,
∴△ABC的周长是△ADE周长的2倍.
又∵AB=3,BC=5,CA=4,
∴△ADE的周长是
1
2
(3+4+5)=6.
故答案为6.
点评:解决本题的关键是利用中点定义和中位线定理得到新三角形各边长与原三角形各边长的数量关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网