题目内容
如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE的长为_____.
如图,∠MON=120°,△ABC是等边三角形,O点是边BC的中点,将△ABC绕点O逆时针旋转一定的角度,OM与边AB相交于点D,ON与边AC(或AC的延长线)相交于点E.
(1)如图1,若OD⊥AB,垂足为D,BC=4,求CE的长;
(2)如图2,当ON与AC边交于点E时,求证:BD+CE=BC;
(3)如图3,当ON与AC边的延长线交于点E时,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BD、BC、CE之间的数量关系.
一个等边三角形绕其旋转中心至少旋转( ),才能与自身重合.
A. 30° B. 60° C. 120° D. 180°
化简的结果是( )
A. 3
B. -3
C.
D.
已知关于x的一元二次方程x2﹣4x+2k=0
(1)若方程有实数根,求k的取值范围.
(2)如果k是满足条件的最大的整数,且方程x2﹣4x+2k=0的根是一元二次方程x2﹣2mx+3m﹣1=0的一个根,求m的值及这个方程的另一个根.
计算: ﹣=_____.
若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A. k>﹣1 B. k>﹣1且k≠0 C. k<1 D. k<1且k≠0
如图,AC是正方形ABCD的对角线,将△ACD绕着点A顺时针旋转后得到△AC′D′,点D′落在AC上,C′D′交BC于点E,若AB=1,则图中阴影部分图形的面积是_____.
如图,△ABC内接于⊙O,弦AD⊥BC,垂足为H,连接OB.
(1)如图1,求证:∠DAC=∠ABO;
(2)如图2,在弧AC上取点F,使∠CAF=∠BAD,在弧AB取点G,使AG∥OB,若∠BAC=600,
求证:GF=GD;
(3)如图3,在(2)的条件下,AF、BC的延长线相交于点E,若AF:FE=1:9,求sin∠ADG的值。