题目内容
| 1 |
| x+3 |
| 6 |
| x2-9 |
| x-1 |
| 6-2x |
分析:各个分式为异分母分式,观察可得最简公分母为2(x+3)(x-3),把各个式子化为分母为2(x+3)(x-3)的形式,然后进行运算即可.
解答:解:原式=
-
+
=
-
+
=
=
=
=
.
| 1 |
| x+3 |
| 6 |
| x2-9 |
| x-1 |
| 2x-6 |
=
| 2(x-3) |
| 2(x+3)(x-3) |
| 2×6 |
| 2(x+3)(x-3) |
| (x+3)(x-1) |
| 2(x+3)(x-3) |
=
| 2x-6-12+x2+2x-3 |
| 2(x+3)(x-3) |
=
| x2+4x-21 |
| 2(x+3)(x-3) |
=
| (x-3)(x+7) |
| 2(x+3)(x-3) |
=
| x+7 |
| 2x+6 |
点评:考查分式的加减法运算;判断出各个分式的最简公分母是解决本题的突破点;注意同时改变分式的分母和分式本身的符号,分式的值不变;最后的结果一定化成最简分式.
练习册系列答案
相关题目