题目内容

已知x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实根.

(1)若(x1-1)(x2-1)=28,求m的值;

(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.

【答案】(1)m的值为6;(2)17.

【解析】试题分析:

(1)由题意和根与系数的关系可得:x1+x2=2(m+1),x1x2=m2+5;由(x1-1)(x2-1)=28,可得:x1x2-(x1+x2)=27;从而得到:m2+5-2(m+1)=27,解方程求得m的值,再由“一元二次方程根的判别式”进行检验即可得到m的值;

(2)①当7为腰长时,则方程的两根中有一根为7,代入方程可解得m的值(此时m的取值需满足根的判别式△ ),将m的值代入原方程,可求得两根(此时两根和7需满足三角形三边之间的关系),从而可求得等腰三角形的周长;

②当7为底边时,则方程的两根相等,由此可得“根的判别式△=0”,从而可得关于m的方程,解方程求得m的值,代入原方程可求得方程的两根,再由三角形三边之间的关系检验即可.

试题解析:

(1)(x1-1)(x2-1)=28,即x1x2-(x1+x2)=27,而x1+x2=2(m+1),x1x2=m2+5,

∴m2+5-2(m+1)=27,

解得m1=6,m2=-4,

又Δ=[-2(m+1)]2-4×1×(m2+5)≥0时,m≥2,

∴m的值为6; 

(2) 若7为腰长,则方程x2-2(m+1)x+m2+5=0的一根为7,

即72-2×7×(m+1)+m2+5=0,

解得m1=10,m2=4,

当m=10时,方程x2-22x+105=0,根为x1=15,x2=7,不符合题意,舍去.

当m=4时,方程为x2-10x+21=0,根为x1=3,x2=7,此时周长为7+7+3=17 

若7为底边,则方程x2-2(m+1)x+m2+5=0有两等根,

∴Δ=0,解得m=2,此时方程为x2-6x+9=0,根为x1=3,x2=3,3+3<7,不成立,

综上所述,三角形周长为17

点睛:(1)一元二次方程根与系数的关系成立的前提条件是方程要有实数根,即“根的判别式△ ”;(2)涉及三角形边长的问题中,解得的结果都需要用“三角形三边之间的关系”检验,看三条线段能否围成三角形.

【题型】解答题
【结束】
21

如图,已知在△ABC中,D是AB的中点,且∠ACD=∠B,若 AB=10,求AC的长.

5. 【解析】试题分析: 由点D是AB的中点,AB=10,易得AD=5;再由∠ACD=∠B,∠A=∠A,可证得: △ACD∽△ABC,从而可得: ,由此得到:AC2=ADAB=50即可解得AC的值. 试题解析: ∵∠ACD=∠B,∠A=∠A, ∴△ACD∽△ABC. ∴, ∴AC2=ADAB. ∵D是AB的中点,AB=10, ∴AD=AB...
练习册系列答案
相关题目

如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

(1)求证:△ABM ∽△EFA;

(2)若AB=12,BM=5,求DE的长.

【答案】(1)证明见解析;(2)4.9.

【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;

(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.

试题解析:(1)∵四边形ABCD是正方形,

∴AB=AD,∠B=90°,AD∥BC,

∴∠AMB=∠EAF,

又∵EF⊥AM,

∴∠AFE=90°,

∴∠B=∠AFE,

∴△ABM∽△EFA;

(2)∵∠B=90°,AB=12,BM=5,

∴AM==13,AD=12,

∵F是AM的中点,

∴AF=AM=6.5,

∵△ABM∽△EFA,

∴AE=16.9,

∴DE=AE-AD=4.9.

考点:1.相似三角形的判定与性质;2.正方形的性质.

【题型】解答题
【结束】
26

如图,矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发沿AB向点B移动(不与点A、B重合),一直到达点B为止;同时,点Q从点C出发沿CD向点D移动(不与点C、D重合).运动时间设为t秒.

(1)若点P、Q均以3cm/s的速度移动,则:AP=  cm;QC=  cm.(用含t的代数式表示)

(2)若点P为3cm/s的速度移动,点Q以2cm/s的速度移动,经过多长时间PD=PQ,使△DPQ为等腰三角形?

(3)若点P、Q均以3cm/s的速度移动,经过多长时间,四边形BPDQ为菱形?

(1)3t,3t;(2)当t=2时,PD=PQ,△DPQ为等腰三角形;(3)当 时,四边形BPDQ是菱形. 【解析】分析:(1)根据路程=速度×时间,即可解决问题.(2)过点P作PE⊥CD于点E,利用等腰三角形三线合一的性质,DE=DQ,列出方程即可解决问题.(3)当PD=PB时,四边形BPDQ是菱形,列出方程即可解决问题. 本题解析:(1) , ; (2)过点P作PE⊥CD于点...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网