题目内容

18.化简:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2015}}$.

分析 把各二次根式进行化简,找出规律进行计算即可.

解答 解:∵$\frac{1}{\sqrt{3}+1}$=$\frac{\sqrt{3}-1}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{1}{2}$($\sqrt{3}$-1),$\frac{1}{\sqrt{5}+\sqrt{3}}$=$\frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$=$\frac{1}{2}$($\sqrt{5}$-$\sqrt{3}$),
∴原式=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+…+$\sqrt{2017}$-$\sqrt{2015}$)
=$\frac{1}{2}$($\sqrt{2017}$-1)
=$\frac{\sqrt{2017}}{2}$-$\frac{1}{2}$.

点评 本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网