题目内容

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),

(1)求二次函数y=ax2+bx+c的解析式;

(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;

(3)平行于x轴的一条直线交抛物线于M,N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

(1)y=x2-2x-3;(2)点P的坐标(1,-6).(3)或 【解析】试题分析:(1)将B、C的坐标代入抛物线的解析式中,联立抛物线的对称轴方程,即可求得该抛物线的解析式.(2)由于A、B关于抛物线的对称轴对称,若P到B、C的距离差最大,那么P点必为直线AC与抛物线对称轴的交点,可先求出直线AC的解析式,联立抛物线对称轴方程,即可得到点P的坐标.(3) 根据抛物线和圆的对称性,知圆心必在...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网