题目内容

6.已知$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{x+y=2}\end{array}\right.$,求$\frac{3x-3y}{{y}^{2}-{x}^{2}}$+$\frac{{x}^{2}-2xy+{y}^{2}}{{x}^{2}-{y}^{2}}$-$\frac{{x}^{2}-x-6}{x+2}$÷(x+y)的值.

分析 根据题目中的式子可以求得x、y的值,然后化简所求的式子,再将x、y的值代入即可解答本题.

解答 解:∵$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{x+y=2}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$,
∴$\frac{3x-3y}{{y}^{2}-{x}^{2}}$+$\frac{{x}^{2}-2xy+{y}^{2}}{{x}^{2}-{y}^{2}}$-$\frac{{x}^{2}-x-6}{x+2}$÷(x+y)
=$\frac{3(x-y)}{(y+x)(y-x)}+\frac{(x-y)^{2}}{(x+y)(x-y)}-$$\frac{(x-3)(x+2)}{x+2}•\frac{1}{x+y}$
=$-\frac{3}{x+y}+\frac{x-y}{x+y}-\frac{x-3}{x+y}$
=$\frac{-3+x-y-x+3}{x+y}$
=$\frac{-y}{x+y}$,
当x=3,y=-1时,原式=$\frac{-(-1)}{3+(-1)}=\frac{1}{2}$;
当x=-1,y=3时,原式=$\frac{-3}{(-1)+3}$=-$\frac{3}{2}$.

点评 本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网