ÌâÄ¿ÄÚÈÝ
18£®ÎÒÊгÇÊзçòÌáÉý¹¤³ÌÕýÔÚ»ðÈȽøÐÐÖУ¬¼ì²éÖз¢ÏÖÒ»Ð©ÆÆ¾ÉµÄ¹«½»³µºò³µÍ¤Óа¹ÛÕ°£¬ÏÖ×¼±¸ÖÆ×÷Ò»ÅúÐµĹ«½»³µºò³µÍ¤£¬²é¿´ÁËÍøÉϵÄһЩºò³µÍ¤Í¼Æ¬ºó£¬Éè¼ÆÊ¦»ÁËÁ½·ù²àÃæÊ¾Òâͼ£¬AB£¬FG¾ùΪˮƽÏ߶Σ¬CD¡ÍAB£¬PQ¡ÍFG£¬E£¬HΪ´¹×㣬ÇÒAE=FH£¬AB=FG=2Ã×£¬Í¼1ÖÐtanA=$\frac{2}{5}$£¬tanB=$\frac{3}{5}$£¬Í¼2µãPÔÚ»¡FGÉÏ£®ÇÒ»¡FGËùÔÚÔ²µÄÔ²ÐÄOµ½FG£¬PQµÄ¾àÀëÖ®±ÈΪ5£º2£¬£¨1£©Çóͼ1ÖеÄCE³¤£»
£¨2£©Çóͼ2ÖеÄPH³¤£®
·ÖÎö £¨1£©Ïȸù¾ÝÒÑÖªÌõ¼þµÃ³ö$\frac{2}{5}$AE=$\frac{3}{5}$BE£¬ÔÙ¸ù¾ÝAE+BE=2£¬ÇóµÃAEµÄ³¤£¬×îºó¼ÆËãCEµÄ³¤¼´¿É£»
£¨2£©ÏÈÁ¬½ÓOFºÍOP£¬¹ýµãO×÷FGµÄ´¹Ïߣ¬×÷PQµÄ´¹Ïߣ¬¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬ÔÙ¸ù¾Ý¹´¹É¶¨ÀíÇóµÃOFµÄ³¤£¬½ø¶øµÃµ½OP³¤£¬×îºó¸ù¾Ý¹´¹É¶¨ÀíÇóµÃPNµÄ³¤£¬½ø¶øÀûÓÃÏß¶ÎµÄºÍ²î¹ØÏµµÃµ½PHµÄ³¤£®
½â´ð ½â£º£¨1£©¡ßtanA=$\frac{2}{5}$=$\frac{CE}{AE}$£¬tanB=$\frac{3}{5}$=$\frac{CE}{BE}$![]()
¡àCE=$\frac{2}{5}$AE£¬CE=$\frac{3}{5}$BE
¡à$\frac{2}{5}$AE=$\frac{3}{5}$BE
ÓÖ¡ßAB=AE+BE=2
¡àAE=1.2
¡àCE=1.2¡Á$\frac{2}{5}$=0.48£¨m£©
£¨2£©¹ýµãO×÷FGµÄ´¹Ïߣ¬´¹×ãΪM£¬¹ýµãO×÷PQµÄ´¹Ïߣ¬´¹×ãΪN£¬Ôò
FM=1£¬MH=ON=1.2-1=0.2
¡ßOµ½FG£¬PQµÄ¾àÀëÖ®±ÈΪ5£º2
¡àOM=0.5=NH
Á¬½ÓOFºÍOP£¬Ôò
Ö±½ÇÈý½ÇÐÎOFMÖУ¬OF=$\sqrt{{1}^{2}+0£®{5}^{2}}$=$\frac{{\sqrt{5}}}{2}$=OP
¡àÖ±½ÇÈý½ÇÐÎOPNÖУ¬PN=$\sqrt{O{P}^{2}-O{N}^{2}}$=1.1
¡àPH=PN-NH=1.1-0.5=0.6£¨m£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˽âÖ±½ÇÈý½ÇÐΣ¬½â¾öÎÊÌâµÄ¹Ø¼üÊÇͨ¹ý×÷¸¨ÖúÏß¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬°Ñʵ¼ÊÎÊÌâת»¯ÎªÊýѧÎÊÌ⣮½âÌâʱÐèÒª×ÛºÏÔËÓÃÈñ½ÇÈý½Çº¯ÊýµÄÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíµÈ֪ʶ£®
| A£® | 64¡ã | B£® | 58¡ã | C£® | 72¡ã | D£® | 55¡ã |
| A£® | £¨1£¬2£© | B£® | £¨-1£¬-2£© | C£® | £¨2£¬-1£© | D£® | £¨2£¬1£© |