题目内容

16.如图,在平行平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,求平行四边形ABCD的周长.

分析 根据平行四边形的性质得出AB=CD,AD=BC=6,AD∥BC,根据平行线性质求出∠ADE=∠DEC,根据角平分线定义求出∠ADE=∠CDE,推出∠CDE=∠DEC,推出CE=DC,求出CD、即可求出答案.

解答 解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC=6,AD∥BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠CDE=∠DEC,
∴CE=DC,
∵BC=6,BE=2,
∴CD=CE=6-2=4,
∴AB=CD=4,
∴平行四边形ABCD的周长为AD+CD+BC+AB=6+4+6+4=20.

点评 本题考查了平行四边形的性质,角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,解此题的关键是求出CD的长,注意:平行四边形的对边平行且相等,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网