题目内容
9.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?
分析 (1)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90),(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;
(2)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到108分钟时骑电动车所行驶的路程,再根据路程与时间算出电动车的速度,再用总路程90千米÷电动车的速度可得乙从A地到B地用了多长时间.
解答 解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,
根据题意得:$\left\{\begin{array}{l}{3k+b=0}\\{1.5k+b=90}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-60}\\{b=180}\end{array}\right.$,
所以y=-60x+180(1.5≤x≤3);
(2)∵当x=$\frac{108}{60}$=1.8时,y=-60×1.8+180=72,
∴骑电动车的速度为72÷1.8=40(千米/时),
∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.
点评 此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.
练习册系列答案
相关题目
18.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.
(1)若工厂生产成本不多于35万元,且获利多于15万元,问工厂有哪几种生产方案?
(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.
| A种产品 | B种产品 | |
| 成本(万元/件) | 2 | 5 |
| 利润(万元/件) | 1 | 3 |
(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.
19.近期由于雾霾严重,不少市民选择佩戴口罩出行,某药店购进甲种可预防PM2.5的N95型口罩和乙种普通口罩共400个,这两种口罩的进价和售价如表所示:
该药店计划购进乙种口罩x个,两种口罩全部销售完后可获毛利润y元.
注:毛利润=(售价-进价)×销售量
(1)求出毛利润y与x的函数关系式;
(2)已知甲种口罩的数量不多于乙种口罩数量的3倍,该药店怎样进货,使全部销售获得的毛利润最大?并求出最大毛利润.
| 甲 | 乙 | |
| 进价(元/个) | 18 | 6 |
| 售价(元/个) | 22 | 9 |
注:毛利润=(售价-进价)×销售量
(1)求出毛利润y与x的函数关系式;
(2)已知甲种口罩的数量不多于乙种口罩数量的3倍,该药店怎样进货,使全部销售获得的毛利润最大?并求出最大毛利润.