题目内容

9.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.
(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?

分析 (1)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90),(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;
(2)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到108分钟时骑电动车所行驶的路程,再根据路程与时间算出电动车的速度,再用总路程90千米÷电动车的速度可得乙从A地到B地用了多长时间.

解答 解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,
根据题意得:$\left\{\begin{array}{l}{3k+b=0}\\{1.5k+b=90}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-60}\\{b=180}\end{array}\right.$,
所以y=-60x+180(1.5≤x≤3);

(2)∵当x=$\frac{108}{60}$=1.8时,y=-60×1.8+180=72,
∴骑电动车的速度为72÷1.8=40(千米/时),
∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.

点评 此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网