题目内容

某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.

(1)写出商场销售这种工具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;

(2)求销售单价为多少元时,该文具每天的销售利润最大;

(3)商场的营销部结合上述情况,提出了A、B两种营销方案:

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25元.

请比较哪种方案的最大利润更高,并说明理由.

(1)w=-10x2+700x-10000; (2)销售单价为35元时,每天销售利润最大,最大利润为2250元; (3)方案A的最大利润更高,理由见解析. 【解析】试题分析:(1)根据利润=(销售单价-进价)×销售量,列出函数关系式即可; (2)根据(1)式列出的函数关系式,运用配方法求最大值; (3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润...
练习册系列答案
相关题目

用反证法证明命题“对顶角相等”第一步假设__________________.

对顶角不相等 【解析】试题分析:利用反证法来进行证明时,首先假设结论不成立,即先假设“对顶角不相等”.

已知函数y=kx2-7x-7的图象和x轴有交点,则k的取值范围是__________

【解析】【解析】 分两种情况讨论:①若k=0,则y=-7x-7是一次函数,与x轴有交点; ②若k≠0,则函数y=kx2-7x-7是二次函数.∵二次函数y=kx2﹣7x﹣7的图象和x轴有交点,∴,∴k≥且k≠0. 综上所述:k≥.故答案为:k≥.

函数的图象如图,那么关于x的方程的根的情况是( )

A. 有两个不相等的实数根 B. 有两个异号实数根

C. 有两个相等实数根 D. 无实数根

C 【解析】【解析】 将函数y=ax2+bx+c的图象往下平移3个单位即可得出函数y=ax2+bx+c﹣3的图象.∵函数y=ax2+bx+c的图象开口向下,顶点纵坐标为3,∴函数y=ax2+bx+c﹣3的图象与x轴只有一个交点,∴方程ax2+bx+c﹣3=0有两个相等的实数根. 故答案为:方程ax2+bx+c﹣3=0有两个相等的实数根.

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求出该二次函数图象的顶点坐标和对称轴;

(3)画出二次函数y=x2+bx+c的图象.

(1)b=-4,c=3;(2) (2,-1),x=2;(3)画图见解析. 【解析】试题分析:(1)把已知点的坐标代入解析式,然后解关于b、c的二元一次方程组即可得解; (2)把函数解析式转化为顶点式形式,然后即可写出顶点坐标与对称轴解析式; (3)采用列表、描点法画出图象即可. 试题解析:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0), ∴ 解得 ...

二次函数y=x2-(m-4)x-m的图象与x轴的两个交点关于y轴对称,则其顶点坐标为___________.

(0,-4) 【解析】根据二次函数y=x2-(m-4)x-m的图象与x轴的两个交点关于y轴对称,可知抛物线关于y轴对称,所以 =0,解得m=4,则顶点坐标为(0,-4). 故答案为:(0,-4).

如图所示,一水库迎水坡AB的坡度i=1:2,求坡角α的正弦值sinα

【解析】试题分析:首先过点A作AC⊥BC于点C,设AC=x,根据AC=x,根据坡比可得BC=2x,根据勾股定理求出AB的长度,然后根据正弦的求法得出答案. 试题解析:过A作AC⊥BC于C, ∵AB的坡度i=1:2, ∴tanα=, 设AC=x,BC=2x, 根据勾股定理可得:AB= , 则sinα=.

先化简,再求值:

已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9,R2=18.5,R3=18.6,I=2.3时,求U的值。

115 【解析】试题分析:先根据提取公因式分解U=IR1+IR2+IR3,再代入求值即可得到结果. U=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网