题目内容

4.顺次连接对角线相等的四边形的各边中点,所形成的四边形是菱形.

分析 根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形解答即可.

解答 解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,
则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,
根据三角形的中位线的性质知,EH=FG=$\frac{1}{2}$D,EF=HG=$\frac{1}{2}$AC,
∵AC=BD
∴EF=FG=HG=EH,
∴四边形EFGH是菱形.
故答案为:菱形.

点评 此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网