题目内容
1.| A. | 1:4 | B. | 1:2 | C. | 1:3 | D. | 2:3 |
分析 根据平行四边形的性质得到AD∥BC,由平行线分线段成比例定理得到$\frac{EF}{BF}=\frac{DE}{CD}$,求得$\frac{EF}{BF}=\frac{1}{2}$,通过△DEF∽△ABF,根据相似三角形的性质即可得到结论.
解答 解:在?ABCD中,
∵AD∥BC,
∴$\frac{EF}{BF}=\frac{DE}{CD}$,
∵DE=$\frac{1}{2}$CD,
∴$\frac{EF}{BF}=\frac{1}{2}$,
∵AB∥CE,
∴△DEF∽△ABF,
∴$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=($\frac{EF}{BF}$)2=($\frac{1}{2}$)2=$\frac{1}{4}$,
故选A.
点评 本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
练习册系列答案
相关题目