题目内容

6.如图,A、B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A、B间距离的方案,并说明其中的道理.
(1)测量方案:
(2)理由:

分析 (1)先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至E,BC至D,使EC=AC,DC=BC,最后测出DE的距离即为AB的长;
(2)利用SAS证明△EDC≌△ABC,根据全等三角形的对应边相等得到ED=AB.

解答 解:(1)测量方案:先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至E,BC至D,使EC=AC,DC=BC,最后测出DE的距离即为AB的长;

(2)理由:
在△EDC和△ABC中,
$\left\{\begin{array}{l}{EC=AC}\\{∠DCE=∠BCA}\\{DC=BC}\end{array}\right.$,
∴△EDC≌△ABC(SAS),
∴ED=AB(全等三角形对应边相等),
即DE的距离即为AB的长.

点评 本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网