题目内容
6.已知方程组$\left\{\begin{array}{l}{x+y=n}\\{x=3}\end{array}\right.$和$\left\{\begin{array}{l}{3x+y=8}\\{x+2y=m}\end{array}\right.$有相同的解,求m与n的值.分析 根据方程组$\left\{\begin{array}{l}{x+y=n}\\{x=3}\end{array}\right.$和$\left\{\begin{array}{l}{3x+y=8}\\{x+2y=m}\end{array}\right.$有相同的解,可知两个方程组的解适合方程组中的每个方程,从而可得方程组$\left\{\begin{array}{l}{x=3}\\{3x+y=8}\end{array}\right.$的解,然后代入$\left\{\begin{array}{l}{x+y=n}\\{x+2y=m}\end{array}\right.$即可得到m、n的值,本题得以解决.
解答 解:∵方程组$\left\{\begin{array}{l}{x+y=n}\\{x=3}\end{array}\right.$和$\left\{\begin{array}{l}{3x+y=8}\\{x+2y=m}\end{array}\right.$有相同的解,
∴$\left\{\begin{array}{l}{x=3}\\{3x+y=8}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$
将$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$代入$\left\{\begin{array}{l}{x+y=n}\\{x+2y=m}\end{array}\right.$,得$\left\{\begin{array}{l}{m=1}\\{n=2}\end{array}\right.$,
即m的值是1,n的值是2.
点评 本题考查二元一次方程组的解,解题关键是明确如果两个方程组的解相同,则这组解适合两个方程组中的任何一个方程.