题目内容
9.(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?
分析 (1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;
(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.
解答 解:(1)DG∥BC.
理由:∵CD∥EF,
∴∠2=∠BCD.
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC;
(2)CD⊥AB.
理由:∵由(1)知DG∥BC,∠3=85°,
∴∠BCG=180°-85°=95°.
∵∠DCE:∠DCG=9:10,
∴∠DCE=95°×$\frac{9}{19}$=45°.
∵DG是∠ADC的平分线,
∴∠ADC=2∠CDG=90°,
∴CD⊥AB.
点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理及角平分线的性质即可得出结论.
练习册系列答案
相关题目