题目内容
10.解方程组:(1)$\left\{\begin{array}{l}{2x+5y=13}\\{3x-5y=7}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{4}+\frac{y}{3}=3}\\{3x-2(y-1)=11}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{2x+5y=13①}\\{3x-5y=7②}\end{array}\right.$,
①+②得:5x=20,即x=4,
把x=4代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+4y=36①}\\{3x-2y=13②}\end{array}\right.$,
①-②得:6y=23,即y=$\frac{23}{6}$,
②×2+①得:9x=62,即x=$\frac{62}{9}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{62}{9}}\\{y=\frac{23}{6}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
15.
如图,在正方形ABCD中∠DAE=25°,AE交对角线BD于E点,那么∠BEC等于( )
| A. | 45° | B. | 60° | C. | 70° | D. | 75° |