题目内容
【题目】如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.
(1)求证:四边形ABCD为菱形;
(2)若BD=8,AC=6,求DE的长.
![]()
【答案】(1)见解析;(2)![]()
【解析】
(1)由ASA证明△OAD≌△OCB得出OD=OB,得出四边形ABCD是平行四边形,在证出∠CBD=∠CDB,得出BC=DC,即可得出四边形ABCD是菱形;
(2)由菱形的性质得出OB=
BD=4,OC=
AC=3,AC⊥BD,由勾股定理得出BC=
=5,证出△BOC∽△BED,得出
,即可得出结果.
(1)证明:∵O为△ABC边AC的中点,AD∥BC,
∴OA=OC,∠OAD=∠OCB,∠ADB=∠CBD,
在△OAD和△OCB中,
,
∴△OAD≌△OCB(ASA),
∴OD=OB,
∴四边形ABCD是平行四边形,
∵DB平分∠ADC,
∴∠ADB=∠CDB,
∴∠CBD=∠CDB,
∴BC=DC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴OB=
BD=4,OC=
AC=3,AC⊥BD,
∴∠BOC=90°,
∴BC=
=5,
∵DE⊥BC,
∴∠E=90°=∠BOC,
∵∠OBC=∠EBD,
∴△BOC∽△BED,
∴
,即
,
∴DE=
.
练习册系列答案
相关题目