题目内容
| A、20° | B、30° |
| C、40° | D、50° |
考点:翻折变换(折叠问题),等边三角形的性质
专题:
分析:根据△DEB′是△BDE沿直线DE翻折得到的,得到∠BDE=∠B′DE,∠BED=∠B′ED,∠B=∠B′,结合三角形内角和为180°,以及等边三角形的知识得到∠B′EC的度数.
解答:解:∵△DEB′是△BDE沿直线DE翻折得到的,
∴∠BDE=∠B′DE,∠BED=∠B′ED,∠B=∠B′,
∵△ABC是等边三角形,
∴∠B=∠B′=60°,
∵∠B′DE+∠B′ED+∠B′=180°,
∴∠B′DE+∠B′ED=120°,
∵∠BDE:∠BED=5:7,
∴∠B′ED=∠BED=70°,
∴∠B′EC=180°-∠B′ED-∠BED=180°-140°=40°,
故选C.
∴∠BDE=∠B′DE,∠BED=∠B′ED,∠B=∠B′,
∵△ABC是等边三角形,
∴∠B=∠B′=60°,
∵∠B′DE+∠B′ED+∠B′=180°,
∴∠B′DE+∠B′ED=120°,
∵∠BDE:∠BED=5:7,
∴∠B′ED=∠BED=70°,
∴∠B′EC=180°-∠B′ED-∠BED=180°-140°=40°,
故选C.
点评:本题主要考查了翻折变换问题,得到所求角与所给角的度数的关系是解决本题的关键,此题难度不大.
练习册系列答案
相关题目