ÌâÄ¿ÄÚÈÝ
20£®Èçͼ£¬Õý±ÈÀýº¯Êýy=axÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó½»ÓÚµãM£¨$\sqrt{6}$£¬$\sqrt{6}$£©£®£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄ±í´ïʽ£»
£¨2£©Èçͼ1£¬Èô¡ÏAMB=90¡ã£¬ÇÒÆäÁ½±ß·Ö±ðÓÚÁ½×ø±êÖáµÄÕý°ëÖá½»ÓÚµãA¡¢B£®ÇóËıßÐÎOAMBµÄÃæ»ý£®
£¨3£©Èçͼ2£¬µãPÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏóÉÏÒ»µã£¬¹ýµãP×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬PF½»Ö±ÏßOMÓÚµãH£¬¹ý×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪG£®ÉèµãPµÄºá×ø±êΪm£¬µ±m£¾$\sqrt{6}$ʱ£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃËıßÐÎPEGHΪÕý·½ÐΣ¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©Ê×ÏÈÖ¤Ã÷¡÷AMC¡Õ¡÷BMD£¬ÍƳöSËıßÐÎOCMD=SËıßÐÎOAMB£¬¼´¿É½â¾öÎÊÌ⣮
£¨3£©ÉèPµã×ø±êΪ£¨x£¬$\frac{6}{x}$£©£¬ÔòPE=HG=GE=$\frac{6}{x}$£¬OE=x£¬
½â´ð ½â£º£¨1£©½«µãM£¨$\sqrt{6}$£¬$\sqrt{6}$£©·Ö±ð´øÈëy=axÓëy=$\frac{k}{x}$µÃ£º
$\sqrt{6}$=a$\sqrt{6}$£¬$\sqrt{6}$=$\frac{k}{\sqrt{6}}$£¬
½âµÃ£ºa=1£¬k=6£®
¡àÕâÁ½¸öº¯ÊýµÄ±í´ïʽ·Ö±ðΪ£ºy=x£¬y=$\frac{6}{x}$£®
£¨2£©Èçͼ1ÖУ¬¹ýµãM·Ö±ð×öxÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪC¡¢D£®![]()
Ôò¡ÏMCA=¡ÏMDB=90¡ã£¬¡ÏAMC=¡ÏBMD=90¡ã-¡ÏAMD£¬MC=MD=$\sqrt{6}$£¬
¡à¡÷AMC¡Õ¡÷BMD£¬
¡àSËıßÐÎOCMD=SËıßÐÎOAMB=6£®
£¨3£©ÉèPµã×ø±êΪ£¨x£¬$\frac{6}{x}$£©£¬ÔòPE=HG=GE=$\frac{6}{x}$£¬OE=x£¬![]()
¡ß¡ÏMOE=45¡ã£¬
¡àOG=GH=$\frac{6}{x}$£¬
¡àOE=OG+GH=$\frac{12}{x}$£¬
¡àx=$\frac{12}{x}$£¬
½âµÃx=2$\sqrt{3}$£¬
¡àPµã×ø±êΪ£¨2$\sqrt{3}$£¬$\sqrt{3}$£©£®
µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢Õý±ÈÀýº¯ÊýµÄÓ¦Óá¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Õý·½ÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÌí¼Ó¸¨ÖúÏß¹¹ÔìÈ«µÈÈý½ÇÐνâ¾öÎÊÌ⣬ѧ»áÀûÓòÎÊý¹¹½¨·½³Ì½â¾öÎÊÌ⣬ÊôÓÚÖп¼³£Ñ¹ÖáÌ⣮
| A£® | µÈ±ßÈý½ÇÐÎ | B£® | ƽÐÐËıßÐÎ | C£® | ÕýÁù±ßÐÎ | D£® | Îå½ÇÐÇ |