题目内容
2.| A. | 100° | B. | 120° | C. | 130° | D. | 150° |
分析 由平行四边形的性质得出∠AEB=∠CBE,由角平分线的定义和邻补角关系得出∠ABE=∠CBE=∠AEB=25°,再由三角形内角和定理即可得出∠A的度数.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE,
∵∠ABC的平分线交AD于E,
∴∠ABE=∠CBE=∠AEB=25°,
∴∠A=180°-∠ABE-∠AEB=130°.
故选:C.
点评 本题考查了平行四边形的性质、三角形内角和定理;熟练掌握平行四边形的性质,求出∠ABE=∠CBE=∠AEB是解决问题的关键.
练习册系列答案
相关题目
13.方程组$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$ |