题目内容
如图,△ABC为等边三角形,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,若DE+DF=3,则△ABC的边长为多少?
作图题.
(1)如图,在图①所给的方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格的顶点处),请按要求将图②中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等(分割线画成实线);
(2)如图③,在边长为1个单位长度的小正方形组成的正方形网格中,点都在小正方形的顶点上.
①在图中画出与关于直线成轴对称的;
②请在直线上找一点,使得的距离之和最小.
如图,的直径,为上一点,弦经过点,若,,那么的长为( )
A. B. C. D.
如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的( )
一元二次方程x2﹣8x﹣2=0,配方的结果是( )
A. (x+4)2=18 B. (x+4)2=14 C. (x﹣4)2=18 D. (x﹣4)2=14
先化简,再求值:,其中
如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=( )
A. 2013 B. 2012 C. D.
如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且以格占为顶点的三角形,这样的三角形共有________个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).
如图,在平面直角坐标系中,,直线与轴交于点,直线与轴及直线分别交于点.点关于轴对称,连接.
(1)求点的坐标及直线的表达式;
(2)设面积的和,求的值;
(3)在求(2)中时,嘉琪有个想法:“将沿轴翻折到的位置,与四边形拼接后可看成,这样求便转化为直接求的面积不更快捷吗?”但大家经反复验算,发现,请通过计算解释他的想法错在哪里.