如果关于x的不等式(3m-1)x>3m-1的解集为x<1,那么m的取值范围是( )

A. m> B. m< C. m>- D. m<-

B 【解析】根据一元一次不等式的解法和基本性质,可由关于x的不等式(3m-1)x>3m-1的解集为x<1,可知3m-1<0,解得m<. 故选:B.

分式x-y+的值为( )

A. B. x+y C. D. 以上都不对

C 【解析】试题分析:原式= = =. 故选C.

下列说法正确的是(  )

A. “任意画一个三角形,其内角和为360°”是随机事件

B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次

C. 抽样调查选取样本时,所选样本可按自己的喜好选取

D. 检测某城市的空气质量,采用抽样调查法

D 【解析】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误; B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误; C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误; D、检测某城市的空气质量,采用抽样调查法,故D正确; 故选:D.

如图,BC=4cm,AB=3cm,AF=12cm,AC⊥AF,正方形CDEF的面积是169cm2,试判断△ABC的形状?

△ABC是直角三角形. 【解析】分析:首先根据正方形的面积求出FC的长,再在Rt△ACF中利用勾股定理求出AC的长,然后根据勾股定理逆定理证明∠B=90°即可. 本题解析: ∵正方形CDEF的面积是169 cm2, ∴FC=13 cm 在Rt△ACF中,由勾股定理得, AC2=CF2﹣AF2=132﹣122=25, 在△ABC中,因为AB2+BC2=32+...

在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.

(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;

(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

(1)证明见解析;(2)EG=AG﹣BG,理由见解析. 【解析】试题分析:(1)如图,作∠GAH=∠EAB交GE于点H,易证△ABG≌△AEH ,再判定△AGH是等边三角形,即可得结论;(2)EG=AG-BG,如图②,作∠GAH=∠EAB交GE于点H,类比(1)的方法证明△ABG≌△AEH,再判定△AGH是等腰直角三角形,即可得结论. 试题解析: 如图,作∠GAH=∠EAB交GE...

已知平行四边形ABCD中,∠B=4∠A,则∠C=__.

36° 【解析】试题解析:∵四边形BCDA是平行四边形, ∴AD∥CB,∠A=∠C, ∴∠A+∠B=180°, ∵∠B=4∠A, ∴∠A+4∠A=180°, 解得:∠A=36°, ∴∠C=36°.

同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( )

A. 点数之和为12 B. 点数之和小于3 C. 点数之和大于4且小于8 D. 点数之和为13

D 【解析】试题分析:找到一定不会发生的事件即可. 【解析】 A、6点+6点=12点,为随机事件,不符合题意; B、例如:1点+1点=2点,为随机事件,不符合题意; C、例如:1点+5点=6点,为随机事件,不符合题意; D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意. 故选:D.

中心对称图形和旋转对称图形的区别是什么呢?

见解析 【解析】【试题分析】注意从定义上区别. 【试题解析】中心对称是把一个图形绕其几何中心旋转180度后能够和原来的图形互相重合的图形叫中心对称图形.这个点就是它的对称中心.例如菱形;旋转对称不是旋转一定的角度,而是旋转非周角的角度。就是说不能是旋转360度的整数倍后与自身重合了。例如电扇的叶片转动120°与自身重合,当然菱形也是旋转对称,但并不是所有的旋转对称都是中心对称. ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网