题目内容
【题目】如图,AB是⊙O的直径,BC交⊙O于点D,E是
的中点,连接AE交BC于点F,∠ACB=2∠EAB.
![]()
(1)求证:AC是⊙O的切线;
(2)若cosC=
,AC=6,求BF的长.
【答案】(1)证明见解析.(2)BF的长为3.
【解析】
(1)证明:连结AD,如图,
∵E是
的中点,
∴
,
∴∠EAB=∠EAD,
∵∠ACB=2∠EAB,
∴∠ACB=∠DAB,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAC+∠ACB=90°,
∴∠DAC+∠DAB=90°,即∠BAC=90°,
∴AC⊥AB,
∴AC是⊙O的切线;
(2)解:作FH⊥AB于H,如图,
在Rt△ACD中,∵cosC=
,
∴CD=
×6=4,
在Rt△ACB中,∵cosC=
,
∴BC=
×6=9,
∴BD=BC﹣CD=9﹣4=5,
∵∠EAB=∠EAD,即AF平分∠BAD,而FD⊥AD,FH⊥AB,
∴FD=FH,
设BF=x,则DF=FH=5﹣x,
∵FH∥AC,
∴∠HFB=∠C,
在Rt△BFH中,∵cos∠BFH=cosC=
,
∴
,
解得x=3,即BF的长为3.
![]()
练习册系列答案
相关题目
【题目】甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
对他们的训练成绩作如下分析,其中说法正确的是( )
A. 他们训练成绩的平均数相同 B. 他们训练成绩的中位数不同
C. 他们训练成绩的众数不同 D. 他们训练成绩的方差不同