题目内容
(x+y-z)(x-y+z)-(y+z-x)(z-x-y)各项的公因式为 .
考点:公因式
专题:
分析:将z-x-y提取负号,进而求出公因式.
解答:解:(x+y-z)(x-y+z)-(y+z-x)(z-x-y)
=(x+y-z)(x-y+z)+(y+z-x)(x+y-z)
=(x+y-z)(x-y+z+y+z-x)
=2z(x+y-z).
故公因式为:x+y-z.
故答案为:x+y-z.
=(x+y-z)(x-y+z)+(y+z-x)(x+y-z)
=(x+y-z)(x-y+z+y+z-x)
=2z(x+y-z).
故公因式为:x+y-z.
故答案为:x+y-z.
点评:此题主要考查了公因式的定义,正确提取负号是解题关键.
练习册系列答案
相关题目