题目内容


如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;

(2)若AD=10,AB=20,点P在边CD上运动,设CP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;

(3)若AD= a,AB=,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD内部时,求a的取值范围。


(1)∵∠QAP=∠BAD=90°,∴∠QAB=∠PAD。

又∵∠ABQ=∠ADP=90°,∴△ADP∽△ABQ。

(2)∵CP =x,CD=AB=20,∴DP =CD﹣DP=

∵△ADP∽△ABQ,∴,即

∴QB=

在Rt△BMN中,由勾股定理得

∴y与x的函数关系式为:(0<x<20)。

         ∵

∴当x=12即CP=8时,y取得最小值为45,BM的最小值为

(3)设PQ与AB交于点E。

∵MN为中位线,∴

∵MN>BE,∴,解得。即

,∴

∴当点M落在矩形ABCD愉部时,a的取值范围为:

【考点】单动点问题,相似三角形的判定和性质,三角形中位线定理,勾股定理,矩形的性质,由实际问题列函数关系式,二次函数的性质,解不等式。


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网