题目内容
一个直棱柱有14个顶点,所有侧棱长的和为42cm,每条侧棱长为 cm,此棱柱底面形状是 ,若将此棱柱展成平面图形,需剪开 条棱.
考点:几何体的展开图
专题:
分析:根据棱柱的顶点数除以2,是棱柱的棱数,进而可得每条侧棱的长度及此棱柱底面的形状,根据此棱柱的棱的条数以及展开后平面之间应有棱连着,即可得出需剪开的棱的条数.
解答:解:∵一个直棱柱有14个顶点,14÷2=7,
∴此棱柱底面形状是七边形,
∵所有侧棱长的和为42cm,
∴每条侧棱长是42÷7=6(cm),
∵七棱柱有9个表面,21条棱,要展成一个平面图形必须8条棱连接,
∴要剪21-8=13条棱,
故答案为:6,七边形,13.
∴此棱柱底面形状是七边形,
∵所有侧棱长的和为42cm,
∴每条侧棱长是42÷7=6(cm),
∵七棱柱有9个表面,21条棱,要展成一个平面图形必须8条棱连接,
∴要剪21-8=13条棱,
故答案为:6,七边形,13.
点评:此题主要考查了几何体的展开图,规律:n棱柱有(n+2)个面,3n条棱,展成平面图形时,(n+2)个面需有(n+1)条棱相连,故应留下(n+1)条棱不剪,所以要把n棱柱展成平面图形,共需剪3n-(n+1)=(2n-1)条棱.
练习册系列答案
相关题目
下列判断中正确的是( )
| A、四边相等的四边形是正方形 |
| B、四角相等的四边形是矩形 |
| C、对角线互相垂直的平行四边形是正方形 |
| D、对角线互相垂直的四边形是菱形 |