ÌâÄ¿ÄÚÈÝ
| 5 |
| 4 |
£¨1£©ÇómµÄÖµ¼°Å×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÈôPÊÇÅ×ÎïÏß¶Ô³ÆÖáÉÏÒ»¶¯µã£¬¡÷ACPÖܳ¤×îСʱ£¬Çó³öPµÄ×ø±ê£»
£¨3£©ÊÇ·ñ´æÔÚÅ×ÎïÔÚÏßÒ»¶¯µãQ£¬Ê¹µÃ¡÷ACQÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãQµÄºá×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©ÔÚ£¨2£©µÄÌõ¼þϹýµãPÈÎÒâ×÷Ò»ÌõÓëyÖ᲻ƽÐеÄÖ±Ïß½»Å×ÎïÏßÓÚM1£¨x1£¬y1£©£¬M2£¨x2£¬y2£©Á½µã£¬ÊÔÎÊ
| M1P•M2P |
| M1M2 |
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©Ê×ÏÈÇóµÃmµÄÖµ£¬¸ù¾ÝÅ×ÎïÏß¶Ô³ÆÐԵõ½Bµã×ø±ê£¬¸ù¾ÝA¡¢Bµã×ø±êÀûÓý»µãʽÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©£¨4£©ÎʽÏΪ¸´ÔÓ£¬Èç´ðͼËùʾ£¬·Ö¼¸¸ö²½Öè½â¾ö£º
µÚ1²½£ºÈ·¶¨ºÎʱ¡÷ACPµÄÖܳ¤×îС£®ÀûÓÃÖá¶Ô³ÆµÄÐÔÖʺÍÁ½µãÖ®¼äÏß¶Î×î¶ÌµÄÔÀí½â¾ö£»
µÚ2²½£ºÈ·¶¨Pµã×ø±êP£¨1£¬3£©£¬´Ó¶øÖ±ÏßM1M2µÄ½âÎöʽ¿ÉÒÔ±íʾΪy=kx+3-k£»
µÚ3²½£ºÀûÓøùÓëϵÊý¹ØÏµÇóµÃM1¡¢M2Á½µã×ø±ê¼äµÄ¹ØÏµ£¬µÃµ½x1+x2=2-4k£¬x1x2=-4k-3£®ÕâÒ»²½ÊÇΪÁ˺óÐøµÄ¸´ÔÓ¼ÆËã×ö×¼±¸£»
µÚ4²½£ºÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ£¬·Ö±ðÇóµÃÏß¶ÎM1M2¡¢M1PºÍM2PµÄ³¤¶È£¬Ï໥±È½Ï¼´¿ÉµÃµ½½áÂÛ£º
=1Ϊ¶¨Öµ£®ÕâÒ»²½Éæ¼°´óÁ¿µÄÔËË㣬עÒâ²»Òª³ö´í£¬·ñÔòÄÑÒԵóö×îºóµÄ½áÂÛ£®
£¨3£©·Ö¢ÙÈôCΪֱ½Ç¶¥µã£¬¡÷ACOÏàËÆÓÚ¡÷CQE£¬¢ÚÈôAΪֱ½Ç¶¥µã£¬¡÷ACOÏàËÆÓÚ¡÷AQE£¬Á½ÖÖÇé¿öÌÖÂÛÇó½â£®
£¨2£©£¨4£©ÎʽÏΪ¸´ÔÓ£¬Èç´ðͼËùʾ£¬·Ö¼¸¸ö²½Öè½â¾ö£º
µÚ1²½£ºÈ·¶¨ºÎʱ¡÷ACPµÄÖܳ¤×îС£®ÀûÓÃÖá¶Ô³ÆµÄÐÔÖʺÍÁ½µãÖ®¼äÏß¶Î×î¶ÌµÄÔÀí½â¾ö£»
µÚ2²½£ºÈ·¶¨Pµã×ø±êP£¨1£¬3£©£¬´Ó¶øÖ±ÏßM1M2µÄ½âÎöʽ¿ÉÒÔ±íʾΪy=kx+3-k£»
µÚ3²½£ºÀûÓøùÓëϵÊý¹ØÏµÇóµÃM1¡¢M2Á½µã×ø±ê¼äµÄ¹ØÏµ£¬µÃµ½x1+x2=2-4k£¬x1x2=-4k-3£®ÕâÒ»²½ÊÇΪÁ˺óÐøµÄ¸´ÔÓ¼ÆËã×ö×¼±¸£»
µÚ4²½£ºÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ£¬·Ö±ðÇóµÃÏß¶ÎM1M2¡¢M1PºÍM2PµÄ³¤¶È£¬Ï໥±È½Ï¼´¿ÉµÃµ½½áÂÛ£º
| M1P•M2P |
| M1M2 |
£¨3£©·Ö¢ÙÈôCΪֱ½Ç¶¥µã£¬¡÷ACOÏàËÆÓÚ¡÷CQE£¬¢ÚÈôAΪֱ½Ç¶¥µã£¬¡÷ACOÏàËÆÓÚ¡÷AQE£¬Á½ÖÖÇé¿öÌÖÂÛÇó½â£®
½â´ð£º½â£º£¨1£©¡ßÒ»´Îº¯Êýy=
x+m¾¹ýµãA£¨-3£¬0£©£¬
¡àm=
£¬
ÔòCµÄ×ø±êΪ£¨0£¬
£©£¬
¡ßÅ×ÎïÏß¾¹ýµãA£¨-3£¬0£©¡¢C£¨0£¬
£©£¬ÇÒÒÔÖ±Ïßx=1Ϊ¶Ô³ÆÖᣬ
ÔòµãBµÄ×ø±êΪ£¨5£¬0£©£¬
¡à¶þ´Îº¯ÊýΪy=-
£¨x+3£©£¨x-5£©»òy=-
x2+
x+
£»
£¨2£©ÒªÊ¹¡÷ACPµÄÖܳ¤×îС£¬Ö»ÐèAP+CP×îС¼´¿É£®
Èç´ðͼ2£¬Á¬½ÓBC½»x=1ÓÚPµã£¬ÒòΪµãA¡¢B¹ØÓÚx=1¶Ô³Æ£¬¸ù¾ÝÖá¶Ô³ÆÐÔÖÊÒÔ¼°Á½µãÖ®¼äÏß¶Î×î¶Ì£¬¿ÉÖª´ËʱAP+CP×îС£¨AP+CP×îСֵΪÏß¶ÎBCµÄ³¤¶È£©£®
¡ßB£¨5£¬0£©£¬C£¨0£¬
£©£¬
¡àÖ±ÏßBC½âÎöʽΪy=-
x+
£¬
¡ßxP=1£¬¡àyP=3£¬¼´P£¨1£¬3£©£®
£¨3£©´æÔÚ¡£¨7·Ö£©
ÉèQ£¨x£¬-
x2+
x+
£©
¢ÙÈôCΪֱ½Ç¶¥µã£¬ÔòÓÉ¡÷ACOÏàËÆÓÚ¡÷CQE£¬
µÃx=5.2£¬
¢ÚÈôAΪֱ½Ç¶¥µã£¬ÔòÓÉ¡÷ACOÏàËÆÓÚ¡÷AQE£¬
µÃx=8.2£¬
¡àQµÄºá×ø±êΪ5.2£¬7.2£®
£¨4£©ÊǶ¨Öµ£¬¶¨ÖµÎª1£®
Áî¾¹ýµãP£¨1£¬3£©µÄÖ±ÏßΪy=kx+b£¬Ôòk+b=3£¬¼´b=3-k£¬
ÔòÖ±ÏߵĽâÎöʽÊÇ£ºy=kx+3-k£¬
¡ßy=kx+3-k£¬y=-
x2+
x+
£¬
ÁªÁ¢»¯¼òµÃ£ºx2+£¨4k-2£©x-4k-3=0£¬
¡àx1+x2=2-4k£¬x1x2=-4k-3£®
¡ßy1=kx1+3-k£¬y2=kx2+3-k£¬¡ày1-y2=k£¨x1-x2£©£®
¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽµÃµ½£º
M1M2=
=
=
£¬
¡àM1M2=
=
=4£¨1+k2£©£®
ÓÖ¡ßM1P=
=
=
£»
ͬÀíM2P=
¡àM1P•M2P=£¨1+k2£©•
=£¨1+k2£©•
=£¨1+k2£©•
=4£¨1+k2£©£®
¡àM1P•M2P=M1M2£¬
¡à
=1Ϊ¶¨Öµ£®
| 5 |
| 4 |
¡àm=
| 15 |
| 4 |
ÔòCµÄ×ø±êΪ£¨0£¬
| 15 |
| 4 |
| 15 |
| 4 |
ÔòµãBµÄ×ø±êΪ£¨5£¬0£©£¬
¡à¶þ´Îº¯ÊýΪy=-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 15 |
| 4 |
£¨2£©ÒªÊ¹¡÷ACPµÄÖܳ¤×îС£¬Ö»ÐèAP+CP×îС¼´¿É£®
Èç´ðͼ2£¬Á¬½ÓBC½»x=1ÓÚPµã£¬ÒòΪµãA¡¢B¹ØÓÚx=1¶Ô³Æ£¬¸ù¾ÝÖá¶Ô³ÆÐÔÖÊÒÔ¼°Á½µãÖ®¼äÏß¶Î×î¶Ì£¬¿ÉÖª´ËʱAP+CP×îС£¨AP+CP×îСֵΪÏß¶ÎBCµÄ³¤¶È£©£®
¡ßB£¨5£¬0£©£¬C£¨0£¬
| 15 |
| 4 |
¡àÖ±ÏßBC½âÎöʽΪy=-
| 3 |
| 4 |
| 15 |
| 4 |
¡ßxP=1£¬¡àyP=3£¬¼´P£¨1£¬3£©£®
ÉèQ£¨x£¬-
| 1 |
| 4 |
| 1 |
| 2 |
| 15 |
| 4 |
¢ÙÈôCΪֱ½Ç¶¥µã£¬ÔòÓÉ¡÷ACOÏàËÆÓÚ¡÷CQE£¬
µÃx=5.2£¬
¢ÚÈôAΪֱ½Ç¶¥µã£¬ÔòÓÉ¡÷ACOÏàËÆÓÚ¡÷AQE£¬
µÃx=8.2£¬
¡àQµÄºá×ø±êΪ5.2£¬7.2£®
£¨4£©ÊǶ¨Öµ£¬¶¨ÖµÎª1£®
Áî¾¹ýµãP£¨1£¬3£©µÄÖ±ÏßΪy=kx+b£¬Ôòk+b=3£¬¼´b=3-k£¬
ÔòÖ±ÏߵĽâÎöʽÊÇ£ºy=kx+3-k£¬
¡ßy=kx+3-k£¬y=-
| 1 |
| 4 |
| 1 |
| 2 |
| 15 |
| 4 |
ÁªÁ¢»¯¼òµÃ£ºx2+£¨4k-2£©x-4k-3=0£¬
¡àx1+x2=2-4k£¬x1x2=-4k-3£®
¡ßy1=kx1+3-k£¬y2=kx2+3-k£¬¡ày1-y2=k£¨x1-x2£©£®
¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽµÃµ½£º
M1M2=
| (x1-x2)2+(y1-y2)2 |
| (x1-x2)+k2(x1-x2)2 |
| 1+k2 |
| (x1-x2)2 |
¡àM1M2=
| 1+k2 |
| (x1+x2)2-4x1x2 |
| 1+k2 |
| (2-4k)2-4(-4k-3) |
ÓÖ¡ßM1P=
| (x1-1)2+(y1-3)2 |
| (x1-1)2+(kx1+3-k-3)2 |
| 1+k2 |
| (x1-1)2 |
ͬÀíM2P=
| 1+k2 |
| (x2-1)2 |
¡àM1P•M2P=£¨1+k2£©•
| (x1-1)2(x2-1)2 |
| [x1x2-(x1+x2)+1]2 |
| [-4k-3-(2-4k)+1]2 |
¡àM1P•M2P=M1M2£¬
¡à
| M1P•M2P |
| M1M2 |
µãÆÀ£º±¾ÌâÊÇÄѶȺܴóµÄÖп¼Ñ¹ÖáÌ⣬×ۺϿ¼²éÁ˳õÖÐÊýѧµÄÖî¶àÖØÒªÖªÊ¶µã£º´úÊý·½Ã棬¿¼²éÁ˶þ´Îº¯ÊýµÄÏà¹ØÐÔÖÊ¡¢Ò»´Îº¯ÊýµÄÏà¹ØÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµÒÔ¼°¶þ´Î¸ùʽµÄÔËËãµÈ£»¼¸ºÎ·½Ã棬¿¼²éÁËÁ½µã¼äµÄ¾àÀ빫ʽ¡¢Öá¶Ô³Æ-×î¶Ì·ÏßÎÊÌâµÈ£®±¾Ìâ½âÌâ¼¼ÇÉÒªÇó¸ß£¬¶øÇÒÔËË㸴ÔÓ£¬Òò´Ë¶Ô¿¼ÉúµÄ×ÛºÏÄÜÁ¦Ìá³öÁ˺ܸߵÄÒªÇó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿