题目内容


在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.

(1)求出y与x的函数关系式.

(2)当销售单价为多少元时,月销售额为14000元;

(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?

[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].


              解:(1)

∴y=﹣4x+480(x≥60);

(2)根据题意可得,x(﹣4x+480)=14000,

解得,x1=70,x2=50(不合题意舍去),

∴当销售价为70元时,月销售额为14000元.

(3)设一个月内获得的利润为w元,根据题意,得

w=(x﹣40)(﹣4x+480),

=﹣4x2+640x﹣19200,

=﹣4(x﹣80)2+6400,

当x=80时,w的最大值为6400

∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网