题目内容
2.若A(x1,y1)、B(x2,y2)是函数y=-$\frac{1}{x}$图象上的两点,且x1<x2,则y1与y2的大小关系是( )| A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能确定 |
分析 根据反比例函数的解析式判断出函数的增减性,再由x1<x2即可得出结论.
解答 解:∵反比例函数y=-$\frac{1}{x}$中,k=-1<0,
∴此函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.
当A、B两点在同一象限时,∵x1<x2,∴y1<y2;
当点A在第二象限,点B在第四象限是,y1>y2.
故选D.
点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的增减性是解答此题的关键.
练习册系列答案
相关题目
13.下列方程中,是一元二次方程的是( )
| A. | 4x2=3y | B. | x(x+1)=5x2-1 | C. | $\sqrt{x}$-3=5x2-$\sqrt{6}$ | D. | $\frac{1}{{x}^{2}}$+3x-1=0 |
17.
已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是( )
| A. | x>3 | B. | x>4 | C. | x<3 | D. | x<4 |
11.下列计算正确的是( )
| A. | (a+b)2=a2+b2 | B. | (3a-b)2=9a2-6ab-b2 | ||
| C. | a6b÷a2=a3b | D. | (-ab3)2=a2b6 |