题目内容

5.如图,EF⊥AB于F,CD⊥AB于D,点G在AC边上,且∠AGD=∠ACB,
(1)求证:EF∥CD;
(2)求证:∠1=∠2.

分析 (1)由垂直的定义可得∠BFE=∠BDC,再根据平行线的判定可证明EF∥CD;
(2)由条件可证明DG∥BC,结合(1)的结论,根据平行线的性质可证明∠1=∠2.

解答 证明:
(1)∵EF⊥AB于F,CD⊥AB于D,
∴∠BFE=∠BDC=90°,
∴EF∥CD;
(2)∵EF∥CD,
∴∠2=∠3,
∵∠AGD=∠ACB,
∴DG∥BC,
∴∠1=∠3
∴∠1=∠2.

点评 本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等?两直线平行,②内错角相等?两直线平行,③同旁内角互补?两直线平行,④a∥b,b∥c⇒a∥c.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网