题目内容
11.解不等式组:$\left\{\begin{array}{l}{4(x-1)≥x+4①}\\{\frac{x}{2}<\frac{2x+1}{3}②}\end{array}\right.$.分析 分别求出各不等式的解集,再求出其公共解集即可.
解答 解:由①得,x≥$\frac{8}{3}$,由②得,x>-2,
故不等式组的解集为:x≥$\frac{8}{3}$.
点评 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
练习册系列答案
相关题目
19.因式分解2x+x3的正确结果是( )
| A. | 2(x+x3) | B. | x(2+x2) | C. | 2x(1+x) | D. | x(2+x3) |