题目内容

16.①已知△ABC的周长为42,AB=14,边AB上的高为12,则它的内切圆的半径为4
②已知△ABC的三边长分别为5,12,13.则它的内切圆的半径为1
③已知如图.△.ABC中.A、B、C三点的坐标分别为A(-3,0)、B(3,0)、C(0,4).若△ABC内心为D.则点D坐标为(0,$\frac{3}{2}$).

分析 ①利用圆的内切圆的性质以及三角形的面积公式:三角形的面积=$\frac{1}{2}$×三角形的周长×内切圆的半径即可求解.
②先证得△ABC是直角三角形.然后根据三角形的面积=$\frac{1}{2}$×(AB+BC+AC)×r计算即可.
③首先根据三角形的面积=$\frac{1}{2}$×(AB+BC+AC)×r求得内切圆的半径,即可确定D的坐标,

解答 解:①设内切圆的半径是r,则$\frac{1}{2}$×42r=$\frac{1}{2}$×14×12,
解得:r=4,
即它的内切圆的半径为4.
②∵△ABC的三边长分别为5,12,13.
∴52+122=132
∴△ABC是直角三角形,
由△ABC的面积=$\frac{1}{2}$×(AB+BC+AC)×r可知:$\frac{1}{2}$(5+12+13)r=$\frac{1}{2}$×5×12.
解得:r=1.
③∵A(-3,O),B(3,O),C(0,4)
∴AB=6,OC=4,
∴AC=BC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴$\frac{1}{2}$(6+5+5)r=$\frac{1}{2}$×6×4,
解得:r=$\frac{3}{2}$,
∴D(0,$\frac{3}{2}$).
故答案为:4;1;(0,$\frac{3}{2}$).

点评 本题主要考查了三角形的内切圆和内心,明确三角形的面积=$\frac{1}{2}$×(AB+BC+AC)×r是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网