题目内容
13.| A. | 4 | B. | 8 | C. | 10 | D. | 12 |
分析 由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.
解答 解:∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,
∴OA=OB=OC=OD=2,
∵CE∥BD,DE∥AC,
∴四边形DECO为平行四边形,
∵OD=OC,
∴四边形DECO为菱形,
∴OD=DE=EC=OC=2,
则四边形OCED的周长为2+2+2+2=8,
故选B
点评 此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关题目
3.
已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4$\sqrt{5}$,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为( )
| A. | (0,0) | B. | (1,$\frac{1}{2}$) | C. | ($\frac{6}{5}$,$\frac{3}{5}$) | D. | ($\frac{10}{7}$,$\frac{5}{7}$) |