题目内容

12.计算:
(1)-32+(π-3.1)0-|1-3$\frac{1}{2}$|×(-$\frac{1}{2}$)-1
(2)(-2x)2•(x23÷(-x)2
(3)(x-4)x-(x-1)(x+2)
(4)利用乘法公式计算1232-124×122.

分析 (1)原式利用乘方的意义,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简即可得到结果;
(2)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;
(3)原式利用单项式乘以多项式,多项式乘以多项式法则计算,去括号合并即可得到结果;
(4)原式变形后,利用平方差公式计算即可得到结果.

解答 解:(1)原式=-9+1+5=-3;
(2)原式=4x2•x6÷x2=4x6
(3)原式=x2-4x-x2-2x+x+2=-5x+2;
(4)原式=1232-(123+1)×(123-1)=1232-1232+1=1.

点评 此题考查了整式的混合运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目
7.阅读下列材料,然后解答问题:
在进行二次根式的化简与运算时,我们有时会碰上如:$\frac{3}{\sqrt{5}}$,$\sqrt{\frac{2}{3}}$,$\frac{2}{\sqrt{3}+1}$一样的式子.其实我们还可以将其进一步化简:
$\frac{3}{\sqrt{5}}$=$\frac{3×\sqrt{5}}{\sqrt{5}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$:(一) $\sqrt{\frac{2}{3}}$=$\frac{\sqrt{2×3}}{\sqrt{3×3}}$=$\frac{\sqrt{6}}{3}$:(二)
$\frac{2}{\sqrt{3}+1}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}-1$:(三)
以上这种化简的步骤叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}-1$.(四)
请解答下列问题:
(1)请用不同的方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$.
①参照(三)式得$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-3;
②参照(四)式得$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5})^{2}-(\sqrt{3})^{2}}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$;
(2)化简:$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$;(保留过程)
(3)猜想:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$的值.(直接写出结论)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网