题目内容
已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为( )
A.9 B.12 C.9或12 D.7
B【考点】等腰三角形的性质;三角形三边关系.
【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【解答】解:分两种情况:
当腰为2时,2+2<5,所以不能构成三角形;
当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.
故选:B.
【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
练习册系列答案
相关题目