题目内容
如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1
,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为__________.
![]()
15.
【考点】轴对称的性质.
【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.
【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,
∴PM=P1M,PN=P2N.
∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.
故答案为:15
【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
练习册系列答案
相关题目