题目内容


  如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.

(1)求抛物线的解析式;

(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.

(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.

 


解:(1)由已知得解得

所以,抛物线的解析式为y=x2x+3.

(2)∵A、B关于对称轴对称,如图1,连接BC,

∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,

∴四边形PAOC的周长最小值为:OC+OA+BC,

∵A(1,0)、B(4,0)、C(0,3),

∴OA=1,OC=3,BC==5,

∴OC+OA+BC=1+3+5=9;

∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.

(3)∵B(4,0)、C(0,3),

∴直线BC的解析式为y=﹣x+3,

①当∠BQM=90°时,如图2,设M(a,b),

∵∠CMQ>90°,

∴只能CM=MQ=b,

∵MQ∥y轴,

∴△MQB∽△COB,

=,即=,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=

∴M();

②当∠QMB=90°时,如图3,

∵∠CMQ=90°,

∴只能CM=MQ,

设CM=MQ=m,

∴BM=5﹣m,

∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,

∴△BMQ∽△BOC,

=,解得m=

作MN∥OB,

==,即==

∴MN=,CN=

∴ON=OC﹣CN=3﹣=

∴M(),

综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为()或().

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网